skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Peng-Chu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study systemic risk in a supply chain network where firms are connected through purchase orders. Firms can be hit by cost or demand shocks, which can cause defaults. These shocks propagate through the supply chain network via input-output linkages between buyers and suppliers. Firms endogenously take contingency plans to mitigate the impact generated from disruptions. We show that, as long as firms have large initial equity buffers, network fragility is low if both buyer diversification and supplier diversification are low. We find that a single-sourcing strategy is beneficial for a firm only if the default probability of the firm’s supplier is low. Otherwise, a multiple-sourcing strategy is ex post more cost effective for a firm. Funding: J.R. Birge acknowledges financial support from the University of Chicago Booth School of Business. The research of A. Capponi has been supported by the NSF/CMMI CAREER-1752326 award. P.-C. Chen acknowledges financial support from the Research Grant Council of Hong Kong [Early Career Scheme Grant 27210118]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2022.2409 . 
    more » « less
  2. Abstract We develop a fixed‐income portfolio framework capturing the exponential decay of contagious intensities between successive default events. We show that the value function of the control problem is the classical solution to a recursive system of second‐order uniformly parabolic Hamilton–Jacobi–Bellman partial differential equations. We analyze the interplay between risk premia, decay of default intensities, and their volatilities. Our comparative statics analysis finds that the investor chooses to go long only if he is capturing enough risk premia. If the default intensities deteriorate faster, the investor increases the size of his position if he goes short, or reduces the size of his position if he goes long. 
    more » « less